Finite-size scaling at the jamming transition.
نویسندگان
چکیده
We present an analysis of finite-size effects in jammed packings of N soft, frictionless spheres at zero temperature. There is a 1/N correction to the discrete jump in the contact number at the transition so that jammed packings exist only above isostaticity. As a result, the canonical power-law scalings of the contact number and elastic moduli break down at low pressure. These quantities exhibit scaling collapse with a nontrivial scaling function, demonstrating that the jamming transition can be considered a phase transition. Scaling is achieved as a function of N in both two and three dimensions, indicating an upper critical dimension of 2.
منابع مشابه
Scaling collapse at the jamming transition.
The jamming transition of particles with finite-range interactions is characterized by a variety of critical phenomena, including power-law distributions of marginal contacts. We numerically study a recently proposed simple model of jamming, which is conjectured to lie in the same universality class as the jamming of spheres in all dimensions. We extract numerical estimates of the critical expo...
متن کاملFinite-size scaling at the jamming transition: corrections to scaling and the correlation-length critical exponent.
We carry out a finite-size scaling analysis of the jamming transition in frictionless bidisperse soft core disks in two dimensions. We consider two different jamming protocols: (i) quench from random initial positions and (ii) quasistatic shearing. By considering the fraction of jammed states as a function of packing fraction for systems with different numbers of particles, we determine the spa...
متن کاملFinite-size effects in the Nagel-Schreckenberg traffic model.
We examine the Nagel-Schreckenberg traffic model for a variety of maximum speeds. We show that the low-density limit can be described as a dilute gas of vehicles with a repulsive core. At the transition to jamming, we observe finite-size effects in a variety of quantities describing the flow and the density correlations, but only if the maximum speed V_{max} is larger than a certain value. A fi...
متن کاملDiverging viscosity and soft granular rheology in non-Brownian suspensions.
We use large scale computer simulations and finite-size scaling analysis to study the shear rheology of dense three-dimensional suspensions of frictionless non-Brownian particles in the vicinity of the jamming transition. We perform simulations of soft repulsive particles at constant shear rate, constant pressure, and finite system size and carefully study the asymptotic limits of large system ...
متن کاملFinite size analysis of zero-temperature jamming transition under applied shear stress by minimizing a thermodynamic-like potential.
By finding local minima of a thermodynamic-like potential, we generate jammed packings of frictionless spheres under constant shear stress σ and obtain the yield stress σy by sampling the potential energy landscape. For three-dimensional systems with harmonic repulsion, σy satisfies the finite size scaling with the limiting scaling relation σy∼ϕ-ϕc,∞, where ϕc,∞ is the critical volume fraction ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 109 9 شماره
صفحات -
تاریخ انتشار 2012